Biomaterials and Their Use in Tissue Engineering: Treating Cardiovascular Disease

Karen L. Christman, Ph.D.

Department of Bioengineering

Sanford Consortium for Regenerative Medicine

University of California, San Diego

SLA 2013 Annual Conference

June 10, 2013

Disclosure: Co-Founder of Ventrix, Inc.

Definitions

- **Biomaterial**: material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body (D. F. Williams 1999)
- Tissue Engineering: is the regeneration and remodeling of tissue in vivo for the purpose of repairing, replacing, maintaining or enhancing organ function, and the engineering and growing of functional tissue substitutes in vitro for implantation in vivo as a biological substitute for damaged or diseased tissues and organs (NIH Bioengineering Consortium (BECON) symposium on tissue engineering, 2001)

Myocardial Infarction

- Leading cause of death in the western world
- 40% of those who experience an MI in a given year will die of it
- Two-thirds of heart attack patients do not make a complete recovery
- Heart transplantation and LVADs are only successful treatments for end-stage heart failure

Myocardial Infarction & Heart Failure

Cellular Cardiomyoplasty

- Injection of viable cells to replace necrotic cardiomyocytes
- Liquid solutions of cell culture media or saline
- Skeletal myoblasts, fibroblasts, cardiomyocytes, adult embryonic stem cells, iPSCs, cardiac stem cells
- Low cell transplant survival
- Paracrine mechanism of action

Biomaterials for Treating MI

Figure 1 Biomaterial Approaches to Treatment of MI

There are 3 strategies currently being examined for the treatment of myocardial infarction (MI): left ventricular restraints (not shown), cardiac patches, and injectable biomaterials. Cardiac patches and injectable materials can be either used as acellular scaffolds (A and D), or delivery vehicles for cells (B and E) and/or biological molecules (C and F).

Injectable Biomaterials

- Injectable Scaffold
 - Acellular or cellular
- Current materials do not mimic the native cardiac ECM
- Few have translated to catheter delivery

Dai W, et al. JACC2005 Christman KL et al. JACC 2004 Kofidis T, et al. J Thorac Card Surg 2004 Lu WN,, et al. Tissue Eng Part A 2008 Davis ME, et al.. Circulation 2005 Landa N, et al.. Circulation 2008 Dobner S, et al. J Card Fail 2009 Fujimoto KL, et al. Biomaterials 2009

Ideal Scaffold Requirements

- Degradable/ Can be Remodeled
- Promote Cell Influx

http://219.221.200.61/ywwy/zbsw(E)/pic/ech4-1.jpg

- Mimic native cardiac extracellular matrix (ECM)
 - Biochemical composition
 - Structural properties
- Minimally invasive catheter delivery
 - Injectable through 27G needle
 - Gelation in-vivo (at 37°C)
 - Appropriate gelation kinetics

Decellularization

- Removal of cells from tissue
- Numerous FDA cleared devices
- Implanted in >2 million people
 - Small intestine submucosa
 - Pericardium
- Biocompatible
- Tissue Engineering scaffolds
- Injectable?

Decellularization Process

Decellularized Myocardium

Scale bar: 100 um

Injectable Matrix Processing

Injectable Matrix Processing

Biochemical Composition

 Biochemical composition should provide cues of native cardiac ECM

Contains numerous
 ECM peptide fragments

 23 ± 5 μg GAG per mg of matrix

Mass Spec:

Fibrinogen
Collagen II
Collagen IV
Collagen V
Collagen V
Lumican
Perlecan
Fibronectin
Fibulin
Laminin
Elastin

Myocardial Matrix Hydrogel

Self-assembles into a nanofibrous gel at physiological conditions

Rat MI Model

Preservation of Cardiac Function

Cell Infiltration 1 Week Post-Injection

In Vivo Catheter Trial – Porcine Model

Biotin labeled Myocardial Matrix

Percutaneous Delivery

No Myocardial Matrix observed in other organs

Porcine MI Model

- Myocardial matrix improved global cardiac function
- Decreased end-systolic and end-diastolic volumes

Seif-Naraghi et al, Science Translational Medicine, 2013

Porcine MI Model

- Improved regional function
- Evidence of neovascularization and cardiac regeneration at endocardium
- Reduced infarct fibrosis

Matrix

Control

Myocardial Matrix

In vitro Stem Cell Studies

Matrix + Stem Cells

Matrix + Growth Factors

Growth Factor Delivery with ECM Hydrogel

Growth Factor Delivery with ECM Hydrogel

- ECM hydrogel retains growth factors through sulfated glycosaminoglycans
- Increased growth factor retention
- Increased neovascularization

Injectable ECM Hydrogels

In vitro Stem Cell Studies

Matrix + Growth Factors

CPCs on Myocardial Matrix

- Mike Davis & Kristin French, Bioengineering, Emory
- Mouse c-kit+ cardiac progenitor cells

Injectable Myocardial Matrix

- Compatible with transendocardial catheter delivery
- Improves cardiac function upon injection post-MI
- Biocompatible, hemocompatible, and no changes in arrhythmias
- Potential for enhancing cell and growth factor therapies
- Currently undergoing GMP manufacturing and first-in-human studies anticipated in late 2013 – beginning 2014

Acknowledgements

Christman Lab

Todd Johnson Jean Wang Sonya Seif-Naraghi, PhD

Adam Young Nikhil Rao Sophia Harrison

Greg Grover, PhD Rebecca Braden

Collaborators

Nabil Dib, MD Anthony DeMaria, MD

BDS

Jonathan Wong Mark Martin

₹UCSD

Jacobs

Former Lab Members

Jennifer Singelyn, PhD Jessica DeQuach, PhD

Kevin Chung, MS

Priya Sundaramurthy, MS

Kristina Javor, MS

Aubrey Smith

Stephen Lin, MS

Airong Song, PhD

Pam Schup-Magoffin

Aboli Rane, PhD

Ventrix, Inc.

Adam Kinsey, PhD Mike Salvatore

National **Heart Lung and Blood** Institute

